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Internal stress and unloading experiments in 
creep 
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Internal stresses are developed during deformation and have an important role in determining the 
mechanical properties and, in particular, the creep properties of crystalline materials. The strain 
transient dip test is the generally accepted method for the determination of internal stresses 
developed during creep. The strain transient dip test has been analysed using a number of very 
general creep models and it is concluded that, for glide-controlled creep, the dip test can only be 
interpreted if the relation between dislocation velocity and the force on the dislocation is linear. 
When this is the case it measures not an average internal stress but an average back stress for all 
the dislocations, mobile and immobile, where the back stress is the resolved component of the 
internal stress plus the glide component of the line tension force divided by the Burgers vector. 
The dip test does not allow separation of the back stress into internal stress and line tension 
components. For recovery models the results of the dip test cannot be simply interpreted because 
expressions for the creep rate do not define a unique average internal stress or back stress. 
However, for the recovery model in which strain occurs by athermal or jerky glide there will be 
a reverse yield stress, i.e. there will be a stress reduction below which there will be 
"instantaneous" reverse strain followed by reverse creep. By averaging the instability condition for 
all the dislocations participating in jerky glide it is shown, subject to assumptions, that the sum of 
the average internal stress experienced by dislocations involved in both forward and reverse creep 
can be obtained from the reverse yield stress. Separate values for these internal stresses cannot be 
obtained, however. Determination of the reverse yield stress for recovery creep is the experiment 
equivalent to the strain transient dip test for glide-controlled creep. 

1. I n t r o d u c t i o n  
It has long been recognized that internal stresses are 
developed during the deformation of materials and 
that these internal stresses have an important role in 
determining mechanical properties [1-6]. At any 
point in the material after deformation there is a local 
effective stress which is the sum of the stress due to the 
externally applied forces and the internal stress. The 
mechanics and kinetics of the deformation and recov- 
ery processes occurring in this local region are deter- 
mined by, amongst other things, the local effective 
stress. The mechanical behaviour of the material body 
as a whole is some sort of total or average of the 
behaviour of all its local regions. Hence, after the 
passage from the microscopic regions to the macro- 
scopic material body it may still be possibl e to discern 
an effective stress which is different from the applied 
stress. At this macroscopic level the applied (tensile) 
stress is o" a and the average internal stress (also re- 
garded as tensile) is -c~i,  where the convention of 
a negative sign is used to make the internal stress, 
which is opposite in sign to the applied stress, into 
a positive quantity. The macroscopic effective (tensile) 
stress, o- e (sometimes given the symbol ~*), is thus 
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given by 

(3" e = (3" a -- O'i (1) 

Internal stresses arise because plastic deformation is 
heterogeneous even in single-phase materials. In such 
materials deformation often develops walls of densely 
tangled dislocations outlining cells which are rela- 
tively free of dislocations. The cell interiors are "soft" 
and easily deformed while the high dislocation density 
walls are "hard" and resist plastic deformation. When 
such a structure is stressed the soft regions deform 
plastically while the hard regions can only deform 
elastically. Geometrically necessary dislocations [7] 
accumulate on the cell walls as a result of the gradient 
of plastic strain between walls and interior. This has 
been discussed in detail by Mughrabi [8]. The geo- 
metrically necessary dislocations lead to internal stres- 
ses in the same direction as the applied stress in the 
cell walls and internal stresses opposing the applied 
stress in the cell interiors. The view that internal stres- 
ses arising from cell walls play an important part in 
creep has been put forward by a number of workers 
[3, 4]. 
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Even more pronounced effects are possible in multi- 
phase systems if the phases have markedly different 
plastic properties. The role of internal stresses in the 
work-hardening of alloys hardened by dispersions of 
small non-deformable particles is fairly well under- 
stood [9]. The geometrically necessary dislocations 

giving rise to the internal stresses are, in this case, 
Orowan loops around the particles. These ideas have 
been applied to the creep of nickel-based alloys con- 
taining 7' precipitates [5, 6] and aluminium lithium- 
based alloys containing 8', S and T1 precipitates [10, 
11]. The role of internal stresses in the creep of com- 
posite materials has also been studied [12, 13]. 

One of the effects of an internal stress is an unex- 
pectedly high dependence of the creep rate on stress. It 
was pointed out by Weertman [14] that the creep rate 
should be proportional to Oa 3 for a uniform distribu- 
tion of dislocations, i.e. one for which internal stresses 
are minimal. Stress exponents of around 5 are typical 
for Class II single-phase alloys and can be very much 
larger for multi-phase alloys. The difference can be 
attributed to the fact that there is an internal stress 
which is constant, or changes relatively slowly, so that 
changes in the applied stress give much larger frac- 
tional changes in effective stress with correspondingly 
large changes in creep rate. 

Measurements of the macroscopic internal stress 
during creep have been carried out using what are 
usually called "dip tests" [5, 6, 10, 11, 15-19], the most 
important being the strain transient dip test. This 
latter technique involves making a series of stress 
reductions of progressively increasing size during 
a creep test and observing the resulting creep rates 
following the reductions. Small stress reductions give 
a reduced positive creep rate but after a sufficiently 
large reduction in stress, a negative creep rate may 
result temporarily. This is usually taken to indicate 
that the effective stress has become negative. There is 
a stress reduction which will give zero creep rate, and 
it is assumed that this implies that the new applied 
stress is equal to the internal stress in accordance with 
Equation 1. This stress reduction is usually obtained 
by interpolation. The strain transient dip test has been 
modified by other workers [19], but the experimental 
values of % are only slightly affected by this [20]. 

Discussion of these phenomena is complicated by 
the lack of carefully defined and universally agreed 
terms. Thus different authors use the terms friction 
stress, threshold stress, internal stress, back stress and 
effective stress in different and inconsistent ways. One 
of the aims of the present paper is to give a consistent 
and hopefully complete set of descriptions and defini- 
tions which can be used to give a full discussion of the 
phenomena. 

The main aim of this paper, however, concerns the 
meaning of the values obtained from the strain transi- 
ent dip test for the two broad classes of creep model 
- glide control and recovery control. Because, by def- 
inition, internal stresses exist in a body without ex- 
ternal forces on its surface, the volume average of each 
component of internal stress over the whole body 
must be zero. The average internal stress experienced 
by the moving dislocations must therefore be some 
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kind of weighted average. Furthermore the strain 
transient dip test involves observations of the strain 
rate and hence it is to be expected that the relationship 
between effective stress and the average area per unit 
time swept by each element of dislocation line will also 
be involved in defining the average effective stress. It 
has never been formally demonstrated that the value 
of the effective stress determined by the strain transi- 
ent dip test is, in fact, the average value which when 
inserted in the correct expression for the creep rate in 
terms of the effective stress (if this were known) would 
give the correct creep rate. 

2. Basic definit ions 
For simple loading systems the applied stress is con- 
stant throughout the volume of the creep specimen, at 
least until cavities and cracks arise. In constant stress 
creep tests it should also be independent of time. 
Internal stresses, often called residual stresses by en- 
gineers when they are on a macroscopic scale, are zero, 
or at least small, initially. They increase with time and 
vary from point to point in the specimen as the dis- 
location distribution becomes more and more hetero- 
geneous. 

The force on a dislocation is defined as minus the 
rate of change of the thermodynamic potential with 
dislocation displacement. Under conditions of con- 
stant temperature and constant external surface forces 
the appropriate thermodynamic potential will be the 
generalized Gibbs' free energy. The force can be separ- 
ated into a number of additive components arising 
from different contributors to the thermodynamic po- 
tential. The rate of change of the potential energy of 
the loading system gives rise to a force whose glide 
component is the external shear stress resolved on the 
slip plane in the direction of the Burgers vector multi- 
plied by the magnitude of the Burgers vector, b. This 
can be called the external force. 

There will also be a force arising from the rate of 
change of the interaction energy between the stress 
field of the dislocation itself and the stress fields of all 
other sources of internal stress. This is also equal to 
the local value of the shear stress arising from the 
sources of internal stress resolved on the slip plane and 
in the direction of the Burgers vector multiplied by b, 
and is the force due to the internal stress. 

In addition there are forces which arises from the 
rate of change of the energy stored in the stress field of 
the dislocation itself as it moves. The line tension force 
arises from the changes in the infinite body part of the 
dislocation stress field. On the simplest model the 
force is equal to Fir where F is the energy stored in the 
stress field per unit length of dislocation and r is the 
radius of curvature of the dislocation line. Changes in 
the energy stored in that part of the stress field of the 
dislocation which arises from satisfying the boundary 
conditions in a finite body, result in image forces. 
Image forces may not be without significance in the 
creep of polycrystalline or multiphase materials but 
they will be ignored here. Line tension and image 
forces cannot be calculated by multiplying an actual 



component of stress by b, but it is possible to calculate 
a fictitious equivalent stress by dividing the force by b. 

Last of all, there are forces due to non-linear elastic 
effects in the dislocation core causing the core energy 
to vary as the dislocation changes position with re- 
spect to the crystal lattice. These are lattice friction 
forces. They are periodic and the maximum value 
must be reached before movement of more than a few 
Burgers vectors will take place. Friction forces always 
oppose dislocation motion if this is defined to be 
a displacement of more than a few Burgers vectors and 
the friction force is then the maximum value. The 
forces due to a distribution of point defects behave in 
a similar manner and it is convenient to lump these 
two sources of force under the heading of friction 
forces. 

The total force, f on a dislocation, if image forces 
are ignored, is therefore 

f = f~ + J ;  + f T  + f F  (2) 

wheref~,f~,fT andfv are the forces due to the external 
stress, the internal stress, line tension and friction, 
respectively. The dislocation will be in equilibrium 
when f is zero. In general, the equilibrium will be 
stable but some dislocation configurations are at or 
near an unstable equilibrium condition and a small 
additional displacement will cause If! to increase. The 
dislocation will then accelerate and move relatively 
large distances. A dislocation bent into a semi-circular 
loop is an instance of such an unstable configuration. 
A small displacement away from the centre of curva- 
ture will cause f v (  ~ T / r )  to decrease while the other 
terms in Equation 2 remain constant. The loop then 
expands freely in the Frank-Read manner. 

If -.-z~ is the local internal shear stress, z~ the 
externally applied stress (both resolved on the slip 
plane and in the direction of the Burgers vector) and Tv 
a friction stress given by - f v / b ,  then Equation 2 may 
be written 

f = (~ - r i -  TF)b A-fT (3) 

where the sign convention used in Equation 1 has 
been employed for both ~i and rv. 

For any given dislocation configuration there will 
be a value of fT which is the unstable equilibrium 
value. If this value is divided by b, then a local thresh- 
old stress, -~ th ,  is obtained and the condition for 
local plastic flow is 

('c~ - z l  - ~:v) -> "cth (4)  

Macroscopic deformation occurs when sufficient 
local regions have undergone plastic flow to enable 
this to be detected by the strain measuring apparatus. 
As already noted, if a value of internal stress is to 
survive the passage from the local region to the whole 
body then the averaging process must be weighted in 
some way. There are two main ways in which dis- 
locations give weighted averages of the internal stress. 

(a) Temporal weighting: dislocations spend less 
time in regions where the internal stress assists the 
applied stress (i.e. regions of high effective stress) than 
they do in regions where the effective stress is low. The 
average internal stress experienced by the dislocations 

is thus non-zero and is such as to oppose the applied 
stress. 

(b) Spatial weighting: in this kind of weighting there 
are regions of high effective stress ("hard" regions) in 
which the dislocations cannot move as easily as in 
other regions where the effective stress is low ("soft" 
regions). The amount of dislocation movement is thus 
greater in regions of low effective stress which are 
given greater weight, and a non-zero average internal 
stress results. Weighted average internal stresses of 
this sort give rise to phenomena such as the Bauschin- 
ger effect. 

Hence it is expected that there are average (tensile) 
values of cyi, %( = oa - oi) and oa - oi - cyv at the 
macroscopic level which are, in principle, detectable in 
macroscopic experiments. In the same way there is an 
average value for the (tensile) threshold stress, oth. It 
will be seen later that other factors are also involved in 
the weighting of the macroscopic averages. 

This serves to define the quantities, oa, oi, ~F and 
ot~. Other terms are also used to designate various 
combinations of the quantities defined here. In par- 
ticular the b a c k  s t r e s s ,  ~b, is defined by 

% = "el + f T / b  (5) 

where we have now adopted the same sign convention 
for f x / b  as for internal stress. The corresponding 
macroscopic average (tensile) value, O'b, of the back 
stress is also a useful quantity. The term internal stress 
is often used for the quantity here called back stress 
and in many cases there is ambiguity as to which 
reference is being made. 

The total force on a dislocation (excluding image 
forces) is ~b  where ~g (to be called the glide stress) can 
be regarded as a generalization of the effective stress. 
It is given by 

"cg = ~c~ - -  % = ~c. - -  ~c i - -  f T / b  (6) 

and it may be expected that there are corresponding 
macroscopic quantities, og and Oh, such that 
O ' g  = ( 7  a - -  ( Y b "  

3. Recovery-controlled and 
glide-controlled creep 

Recovery is the result of thermally activated processes 
which change the values of ol and oth which determine 
the flow stress. The average velocity of dislocation 
glide may be controlled by such processes. When this 
is the case creep is said to be recovery controlled. 

There are two classes of model for recovery creep. In 
the first of these bursts of rapid glide punctuate long 
periods of relatively small dislocation movement dur- 
ing which recovery occurs. This is the so-called jerky 
or athermal glide model. During the recovery period 
the dislocation is in the stable state defined by Equa- 
tion 2 with f =  0, but recovery wilt eventually bring it 
to the unstable state defined by Equation 4. ff the 
friction stress, cry, is such that the energy barrier it 
presents to dislocation motion is small relative to the 
thermal energy available, then, once the unstable state 
has been achieved, the dislocation will move in an 
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athermal manner, acceleratingto high speed and mov- 
ing a relatively large distance until it meets an obstacle 
which arrests it. Recovery will then change the values 
of ~i and fT and the segment may be released for 
a further glide event. Clearly the time taken for the 
thermally activated processes will be large compared 
to the essentially athermal glide events and the overall 
strain rate will be determined by the rate of recovery. 
If the friction force is not negligibly small but can still 
be overcome by thermal activation, then dislocation 
motion will no longer be athermal. Creep will still be 
recovery controlled if the time taken for the disloca- 
tion to glide after it has been released is short relative 
to the time spent waiting to be released by recovery. 
As the friction stresses become more significant there 
will be a transition from recovery control to glide 
control of the creep rate. 

In the second class of models for recovery creep, 
jerky or athermal glide is not involved and dis- 
locations are always at or near equilibrium. This could 
be the case if, for example, the sub-grain size or the 
grain size is smaller than the length of dislocation 
which would be unstable at the given local effective 
stress. Recovery may progressively release a segment 
from one sub-grain wall and allow it to expand slowly 
across the sub-grain until it meets and is possibly 
incorporated into the opposite sub-grain wall without 
ever undergoing athermal glide. This is the continuous 
glide recovery model. 

A different case arises if the energy barriers due to 
friction are so large that glide cannot be thermally 
activated at a rate that can be detected. In this case the 
friction stress, as it has been defined, will be so large 
that it is not possible for the equilibrium expressed by 
putting f =  0 in Equations 2 and 3 to be satisfied. 
Equilibrium will, of course, be achieved by small 
movements within the limit of a few Burgers vectors 
used to define the friction stress, but greater 
movements than this will not be possible and there 
will be no creep due to dislocation glide. However, 
there is an alternative mechanism for dislocation 
movement if the major part of the friction stress arises 
from interaction with point defects. Diffusion of the 
point defects in response to the force exerted on them 
by the dislocation enables slow glide to take place and 
creep will again be glide controlled. 

There are other cases in v~hich creep may be glide 
controlled which cannot be described in terms of 
a friction stress. When the material has a fine disper- 
sion of particles which cannot be cut or looped, dis- 
locations can only glide if short segments climb or 
cross-slip over the particles and the rate of these pro- 
cesses will determine the average rate of glide. In other 
cases, dislocations may only be able to move if point 
defects are created at jogs and moved away into the 
lattice with the help of thermal activation. 

4. Anelastic effects 
Anelasticity is defined as time-dependent recoverable 
strain. Unloading experiments will therefore always 
involve anelasticity. The view taken in the present 
paper is that anelasticity is a manifestation of plastic- 
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ity and is not distinct from it, although it is often found 
convenient to make such a distinction from a phenom- 
enological point of view. Anelasticity arises because 
some plastic deformation mechanisms store elastic 
energy in the deformed body which can be used to do 
work against the external forces and cause reverse 
strain on partial unloading. Anelasticity is therefore 
an aspect of the general phenomenon being discussed 
here. Some workers have suggested that the zero 
strain rate condition determined by the strain transi- 
ent dip test is simply the point when the reverse strain 
due to anelasticity balances the continuing forward 
strain due to normal creep [21, 22]. This view seems to 
imply that there is a difference between plasticity and 
anelasticity, a view which the present authors do not 
hold. However, because of the heterogeneous nature 
of the deformation process and the resulting variation 
of internal stress from point to point, it is to be 
expected that a large stress reduction will cause some 
regions to strain in the reverse direction while others 
continue to strain in the forward sense. Hence the 
statement that a zero creep rate after a stress reduction 
is a result of superposition of forward and backwards 
creep is one that cannot be argued with. It is to be 
expected that this process of superposition defines the 
average internal stress. 

Difficulties of interpretation arise, however, when 
deformation mechanisms which do not contribute sig- 
nificant amounts of strain in normal creep, or which 
are not themselves rate-controlling, contribute a signi- 
ficant amount of reverse creep on unloading. Grain- 
boundary sliding in polycrystals is a case in point. 
This relaxes the shear stress on grain boundaries to 
very low values during normal creep, generating inter- 
nal stresses in the grains which are in the same sense as 
the applied stress. The grain boundaries thus play the 
role of the soft component of a composite system, with 
very low effective stresses, and the grains the hard 
component. Partial unloading will bring about 
a negative effective shear stress on the boundaries 
which therefore slide in the direction giving reverse 
strain. In this process some of the strain energy stored 
in the grains will be used to raise the potential energy 
of the loading system and some will be degraded into 
heat. It will be noted that this is exactly analogous to 
reverse creep by the main or rate-controlling mechan- 
ism occurring after unloading. Forward creep stores 
strain energy in internal stress fields which then drives 
reverse creep after unloading. 

If all possible deformation mechanisms could be 
taken into account in the description of forward creep, 
a complete description of unloading transients would 
be possible without invoking a third deformation 
mode different from elasticity or plasticity. At present 
this can only be done to a very limited degree. In the 
following section the effect of various mechanisms 
which can give reverse strain in addition to the main 
deformation mode will be briefly discussed. 

5. Interpretat ion of the dip test 
5.1. Glide-controlled case 
The force per unit length exerted by a dislocation on 



the obstacles giving rise to the friction stress is %b 
where 

"['g = Ta - -  Ti - -  fT /b  

= "Ca - -  q2b ( 7 )  

where Ta and zi are the resolved componen t s  of the 
applied stress and the internal stress, respectively, and 
% is the back stress. In terms of the applied tensile 
stress, aa 

"Ca = O" a COS 0 C O S  ~/ 

= CYa rrt (8) 

where 0 and qs are defined in Fig. 1 and m = c o s 0 c o s ~  
is the or ienta t ion factor. 

If Zg is averaged along the whole length of disloca- 
tion line in the mater ial  the value obta ined is 

( " [ ' g )  = ( m S ( ~  a - -  ( T b 5  ( 9 )  

and ag and ab could be defined as  ('Cg)/(m) and 
( % ) / ( m ) ,  respectively. However ,  as will be seen, these 
are not the averages defined by the dip test. 

The length, dl, of dislocation line having Xg between 
Zg and ~g + d'tg and m between m and m + d m  is given 
by 

dl = pVp( 'Cg,  m)dzgdm (10) 

where p is a normal ized probabi l i ty  distribution, V the 
total  volume and 9 the total dislocation density. It  will 
become clear that  the whole of the dislocation popula-  
t ion has to be included in the averaging process if the 
dip test is to be correctly analysed. If the velocity of an 
element of dislocation line is 

~) = U (" [g)  (11) 

the tensile strain rate is 

= 9 b ~ v ( z g ) m p d z g d m  (12) 

The integral par t  of Equa t ion  12 is the or ientat ion 
weighted average of the velocity, ~ = (V(Zg)m). Note  
that  m a n y  dislocations with zero velocity are included 
in the average, g. Because v and m are correlated, 

r ( v )  (m) .  We have 

= obg (13) 

The value of ~ defines an average value of Zg ( = ~g) 
via the inverse functional relat ionship of Equat ion  11, 
i.e. 

~g = Zg(#) (14) 

In general, there is insufficient informat ion in Equa-  
tions 12 and 14 to allow '~g t o  be par t i t ioned into 
componen t s  due to the applied stress and due to the 
back stress. However ,  if v is p ropor t iona l  to %, i.e. 
V = kzg we have 

= ~k(mcYa - % ) m p d z g d m  (15) 

o r  

~/k = ~g = ( m Z ) c & -  (Zbm) (16) 

which may  be compared  with Equa t ion  9. The defini- 
t ions 

CXg = "~g/(m 25 (17) 
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Figure I The angles, 0 and ql, defining the orientation factor, m, for 
a dislocation. OA is the tensile axis, ON the normal to the slip plane 
and OB the Burgers vector. OA, ON and OB are not co-planar in 
general. 

and 

CYb = (Tbm}/ (m25  (18) 

then give 

(~g = O'a - CYb (19) 

Suppose now that  the applied stress is reduced by 
Aaa. The new strain rate immediately  after the change 
is 

~' = 9 b ~ v ( Z g  - m A a a ) m p d z g d m  (20) 

where p and Zg are the values obtaining immediate ly  
before the stress reduction. This defines a new average 
Zg(= ~'g) given, in the linear case, by 

'~'g = ~ m Z ~ ( O ' a  - -  A(3"a  - -  ~ b )  ( 2 1 )  

The new stain rate will be zero when "~'g is zero, i.e. 
when 

O'a - -  A(3"a  ~-  O" b (22) 

and 
Aaa = ag (23) 

Clearly the remaining stress when &' = 0 is equal, not 
to the average internal stress, but to the average back 
stress, CYb. The experiment  does not allow o" b to be split 
up into componen t s  due to internal stress and line 
tension. 

In the non-l inear  case it is impossible to write equa- 
tions equivalent  to Equat ions  21-23. When &' = 0 the 
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stress reduction, A%, will have made "?'g equal to zero 
but the remaining stress, % - A%, cannot be inter- 
preted as the mean tensile back stress before stress 
reduction nor can the stress reduction, her., be inter- 
preted as the mean tensile glide stress. For  example, if 

3 Equations 12 and t4 would v were proportional to Tg, 
give 

"~g = [ - < m a > e r a  3 - -  3 < m 3 % > e r a  2 + 3<rn2"rb2>era 

_ (mVb 3 }31/3 (24) 

from which it is clear that no separation of ~g into 
applied stress and back stress terms is possible. This 
results from the fact that the average value, ~g, is 
determined not only by the distribution of m and ~g 
but also by the functional relationship between ~g and 
velocity, v. 

Because the total, rather than the mobile, disloca- 
tion density is used in Equations 12 and 13, the aver- 
age velocity defined in Equation 12 will be much 
smaller than the average velocity of the mobile dis- 
locations alone. Similarly, the average % will be small- 
er than the value for the mobile dislocations. This 
procedure is important because, although the non- 
mobile part of the dislocation population makes no 
contribution to the strain before unloading, after un- 
loading these dislocations will straighten at a velocity 
governed by Equation 11, causing reverse strain in the 
process. It is essential that this should be included in 
the analysis if the significance of the results of the dip 
test is to be understood. Reverse strain arising from 
previously immobile dislocations would normally be 
called anelastic strain and this particularly simple case 
is therefore an example of how anelastic strain can be 
treated in the frame work of a complete theory of 
forward creep. It has to be so treated if the results of 
the dip test are to be correctly interpreted. Clearly the 
dip test determines the value of erb for all the dis- 
locations, mobile and immobile. 

The individual contributions of the mobile and im- 
mobile dislocations of erb can be obtained as follows. 
From Equation 10 it can be shown that 

p < ' C b m  > = 9 i ( z b r n ) l  + 9 M ( Z b m ) M  (25) 

where the subscripts I and M refer to the immobile 
and mobile populations, respectively. For  the im- 
mobile population, ~g = 0 by definition, which gives 
% = mera and hence 

p<'Cbrrt > ----- p l ( m 2 > l e r a  -4- 9 M ( Z b m > M  (26) 

o r  

~Yb - -  
<27bin> 

- -  er a - -  A c t  a 

= p,<m2>ler, + Pra(Zbm>M (27) 
p<m2> p<m 2> 

This treatment of anelastic effects is strictly only 
valid if the spacing of the sources of the friction stress 
along the dislocation is very much smaller than its 
radius of curvature, such as would be the case for 
a solute atom atmosphere. However if the motion of 
the dislocation is controlled by dragging defect emit- 
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ting/absorbing jogs then it will be curved between the 
jogs. Changes in this curvature will cause reverse 
strain on unloading which will not be taken into 
account by the above treatment, although such 
changes in curvature are likely to be completed during 
unloading and therefore before the start of reverse 
creep in most cases. 

The treatment also applies strictly only to single 
crystals. In polycrystals some reverse strain on un- 
loading is caused by grain-boundary sliding and this is 
not taken into account. However, in the Appendix it is 
shown that reverse grain-boundary sliding occurs so 
rapidly in many cases that it is virtually complete 
before the first readings of strain are taken after 
a stress reduction. Hence its effect on the values of erg 
and erb obtained from the strain transient dip test can 
often be neglected. 

5.2. R e c o v e r y - c o n t r o l l e d  c a s e s  
It is assumed that dislocations are in a three-dimen- 
sional network with a distribution of segment or link 
lengths, L. The resolved effective stress on a link is 
z, = v , -  zi as before. Each link is characterized by 
a parameter, x, where 

"C e 
X ~ - -  

~'th 

L 
- ( 2 8 )  

2R 

where 
~th = 2 ~ G b / L  (29) 

is the Frank-Read threshold stress with ~ a constant 
1/2, G the shear modulus and b the Burgers vector, 

while R is the equilibrium radius of curvature given by 

R = ~Gb/'~e (30) 

The threshold stress, ~h, is regarded as an intrinsically 
positive quantity so that x = 1 is the condition for 
instability in the forward direction and x = - i for 
instability in the reverse direction. 

Recovery changes ~th (via changes in L) and ~e (via 
changes in ~i), allowing strain to take place. There is 
a local recovery rate, 2 = dx/d t ,  for each segment. 

As already explained there are two ways in which 
strain may occur in recovery-controlled creep, con- 
tinuous glide and jerky glide. In the former case the 
dislocation links sweep out additional area as recov- 
ery changes both zo (via changes in ~i) and ~th (via 
changes in L). The processes are illustrated in Fig. 2. 
For  continuous glide the strain rate is determined by 
/1 = dA /d t ,  the area swept out per unit time by a dis- 
location link. We have 

~A ~A 
A = + (31) 

and A is therefore a function of%,  re, "~th and tin- It is 
not necessary to use the actual functional relationship 
for the present purposes. 

The tensile strain rate is therefore 

g = b N . [ ~ f I f m A q l d m d ' % d t e d ' q h d ' t t h  (32) 
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Figure 2 Illustrating the strain-producing processes in continuous 
glide recovery creep. (a) A dislocation segment initially of length L~ 
is bowed into an arc of radius R by the effective stress. The shaded 
area is swept out if recovery changes Lt to L 2 (i.e. changes Zth ) while 
the internal stress, and hence the effective stress and R, remain 
constant. (b) A dislocation segment, initially bent into a radius Ra, 
sweeps out the shaded area as recovery reduces the internal stress, 
increasing the effective stress and changing the radius to Rz while 
the segment length, L, remains constant. In general both these 
processes will act on any given segment simultaneously. 

where q~ is the probability distribution of m, "c~, "~r zt~ 
and "~th for the links. The integral is the orientation 
weighted average of A, (mA). 

However, (mA) does not define a unique mean 
value of effective stress, Ze, as the equivalent quantity, 
(my ) ,  defines ~g in the glide-controlled case. This is 
because te and "cth do not depend simply on the effect- 
ive stress on the link in question. For  instance, tth will 
depend partly on the effective tensile stresses on 
a large number of links surrounding the particular 
link, as these climb to cause network coarsening, in- 
creasing L. Similarly, "ci (and hence "~) will be deter- 
mined by changes, driven in part by an effective stress, 
in the arrangements of geometrically necessary dis- 
locations quite remote from the link in question. 

If the stress is reduced, dislocations will increase 
their radii of curvature and straighten. For  large re- 
ductions the effective stress on some links will change 
sign and continued network coarsening will allow 
these links to contribute reverse strain. It is conceiv- 
able that there will be a stress reduction, A~a which 
will make (mA), and therefore ~, temporarily zero. 
Clearly there will be no simple relationship between 
the stress remaining, cy a - A~a and the average inter- 
nal stress experienced by the links. 

In the jerky glide model, recovery brings links to the 
unstable state x = 1 and bursts of athermal glide oc- 
cur during which the released dislocation sweeps out 
an area Aj producing strain. In general, both this and 
continuous glide will occur simultaneously but only 
the case where jerky glide contributes most of the total 
strain will be considered. If the number, dn, of links 
per unit volume having x from x to x + dx, m from 
m to m + din, 2 from 2 to 2 + d2 and A s from Aj to 
Aj + dAj is 

dn = Nq2(x ,m ,  2, A j ) d x d m d 2 d A j  (33) 

where N is the total number of links per volume, then 
the strain rate is given by 

= bN ~ ~ ~ mAj2~ =~ q2(x = 1, m, 2, A) dm d2 dA (34) 

because only links with x = 1 make a contribution to 
the strain rate. The integral is the average value of 
mAi2  ~ ~ so that 

= b N ( m A j 2 x = ~ )  (35) 

As in the previous case, Aj and 2 depend upon the 
effective stress in different ways. Aj depends on the 
local effective stress on the link (and also on the 
arrangement of links in the local region) but because 
2 is related to te and "~th it will depend on the effective 
stresses in a relatively large and ill-defined volume as 
already discussed. Hence the mean value ( m A 2 x = t )  
will not define a unique value of the mean effective 
stress as was the case for the corresponding quantity 
in the glide-controlled model. 

If the stress is reduced, jerky glide will immediately 
cease because x will have been reduced for all links 
and there will be no links at the unstable condition, 
x = 1. There will be reverse strain as dislocations 
straighten but this will be very rapid if glide is truly 
athermal and will occur as rapidly as the load can be 
reduced. There will also be time-dependent reverse 
strain due to grain-boundary sliding as considered in 
the Appendix. Continuous glide recovery creep will 
still give forward creep for small stress reductions and 
possibly negative creep for large stress reductions. The 
effect of the stress reduction, as far as the jerky glide 
mechanism is concerned, is to shift the distribution 
function q2 along the x axis in a negative direction and 
Nso change its shape. For a large enough stress reduc- 
tion the left-hand tail of the distribution will overlap 
the point x = - 1 and rapid reverse strain will occur 
followed by a period of reverse creep by the jerky glide 
mechanism. Rapid reverse yield followed by reverse 
creep was observed after stress reductions during the 
creep of aluminium in both single and polycrystalline 
form in a series of very careful experiments by Parker 
and Wilshire [23]. Their results are illustrated sche- 
matically in Fig. 3. 

The analysis of the strain transient dip test for the 
glide-controlled case is based on averaging the dislo- 
cation velocity. When jerky glide recovery is applic- 
able it is possible to analyse the reverse yield stress by 
averaging the condition for Frank-Read instability 
for the links contributing the strain. During forward 
creep we can average the effective stress, "ce = rnCya - "ci 

0 

100 Q i t ~ J i 

i Polycrystal 

Single crystal 

P 

0 - -  ~ I i i I i 

0 120 xlO -5 

Instantaneous contraction (strain) 

Figure 3 Schematic representation of reverse yield on unloading 
super-purity aluminium creeping at 573 K with an initial stress of 
10.3 M N m  -2 (after Parker and Wilshire [23] Fig. 6). OQ is the 
elastic unloading line and the remaining stress corresponding to the 
point P is the reverse yield stress. 
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over the links with x = 1 to obtain 

( T e )  = ( T t h )  = ( r e ) o -  a - - ( ' t ' i )  (36)  

or, defining o-th = ('Cth)/(m) and o-i = ( 'ci) /(m) 

c r t h =  o-a - o-i (37) 

If the stress reduction, Ao-a, is just sufficient to give 
reverse creep with negligible reverse yield (i.e. 
o-a - -  Ao-a is the reverse yield stress) then the effective 
stress, o-e, will be negative and equal to - cy'th where 
o-'th (which is intrinsically positive) is the average value 
for the dislocations involved in reverse creep. We can 
write for these dislocations 

- -  o-'th = o-a - -  mo-a - -  o-"i (38) 

From Equations 37 and 38 we have 

(Yth - o-'th = 2 % - -  AO-~ - -  (o-i + cYl) (39 )  

and 

o-,h + o-'th = Ao-a + ((3"i - -  O'i) (40) 

Equations 39 and 40 are the equivalent of Equa- 
tions 22 and 23 for the glide-controlled case. However, 
they are far less informative because there are four 
u n k n o w n  quantities and only two equations connect- 
ing them. It is clear that o-~ ~ o-i since links with a low 
internal stress are likely to be involved in forward 
creep while those causing reverse creep will have 
a high internal stress. However, for both forward and 
reverse creep, it is links with the lowest value of ~th 
which will give strain. It is possible therefore that 
o-th = o-'th. If this is the case then Equations 39 and 40 
become 

o-. �89 1 , - -  = ~(o-i  + o-i) (41)  

and 

o-th 21Ao-a + 2(o-i o-i) (42)  

and the reverse yield stress allows an average value of 
the internal stresses experienced by the links involved 
in both forward and reverse creep to be calculated. 

If the stress reduction, o -a -  Ao,,  is greater than 
that required to reach the reverse yield stress some 
rapid reverse strain will take place and reverse creep 
will follow. Equation 38 will be valid for the dis- 
locations involved in this reverse creep but the values 
of o-'th and o-'i will be different from those applicable to 
the material for which o -a -  Ao-a is the reverse yield 
stress. This is because the rapid reverse strain preced- 
ing the reverse creep will change the structure and 
hence change both o-'th and o-'i. It will then certainly not 
be possible to put cyth = cY[h even if this were true for 
the reduction Ach which just brings the stress to the 
reverse yield stress. 

7. Discussion and conclusions 
For glide-controlled creep it has been shown that the 
strain transient dip test can only be interpreted if the 
relation between dislocation velocity and the glide 
stress is linear. When this is the case the expression for 
the creep rate defines a unique value for the average 
back  s tress  exerted on all the dislocations, mobile or 
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immobile, and the strain transient dip test enables this 
average back stress to be determined. The back stress 
is the resolved component of the internal stress plus 
the line tension glide force divided by the Burgers 
vector, but the dip test does not give enough informa- 
tion to allow the separation of the back stress into 
components due to the internal stress and due to line 
tension. Hence it has been shown that the strain tran- 
sient dip test determines an average back stress not  an 
average internal stress as usually assumed, and this 
only if thedislocation velocity is proportional to the 
glide stress. 

When dislocation velocity is non=linearly related to 
the glide stress, a stress reduction can be found which 
gives zero creep rate and this stress reduction does 
make the average glide stress equal to zero. However, 
it has been shown that the remaining stress, % - A o - a ,  

is not  equal to the average (tensile) back stress and the 
stress reduction, Ao-a, is not equal to the average 
(tensile) glide stress before stress reduction. 

For recovery-controlled creep the expressions for 
the creep rate do not define a unique average value for 
the internal stress or the back stress. This is true for 
both continuous glide and jerky glide recovery 
models. It follows that the strain transient dip test 
cannot be used to determine an average internal stress 
or average back stress for materials undergoing recov- 
ery-controlled creep. For recovery creep involving 
continuous glide, a series of dip tests may enable 
a stress reduction to be found which gives a zero creep 
rate, but there is no simple interpretation of the stress 
remaining in terms of an average back stress or aver- 
age internal stress. Nevertheless the observation of 
negative creep in such materials would indicate the 
importance of internal stress in determining creep 
behaviour. 

For jerky glide recovery creep the strain transient 
dip test fails because creep (at least by the principle 
rate-controlling mechanism) ceases as soon as the 
stress is reduced by any amount. If internal stresses are 
sufficiently large there will be a stress reduction large 
enough to cause rapid reverse glide followed by re- 
verse creep, i.e. there is a reverse yield stress. It was 
pointed out by Poirier [24] some time ago that the 
occurrence of reverse yield on unloading was better 
evidence for the jerky glide recovery model than the 
existence of incubation periods, which are the subject 
of continuing controversy 1-25-27]. 

The determination of the reverse yield stress for 
a material undergoing jerky glide recovery creep is the 
equivalent experiment to the strain transient dip test 
for a material undergoing glide-controlled creep. The 
results of both of these kinds of experiment show that 
internal stresses are important in creep. Only a limited 
amount of information can be obtained from measure- 
ments of the reverse yield stress, however. The limita- 
tion is related to the fact that reverse creep involves 
a different set of dislocations experiencing different 
internal stresses from those involved in forward creep. 
If the threshold stresses for the two sets of dislocations 
are the same, which seems plausible, then it is possible 
to calculate the average internal stress on the disloca- 
tions involved in both forward and reverse creep, but 



average internal stresses for the two sets of disloca- 
tions separately cannot be obtained. 

Appendix 
Here we calculate the reverse strain and the reverse 
strain rate due to grain-boundary sliding when a poly- 
crystalline specimen is partially unloaded during 
creep. On first loading a polycrystal at high temper- 
atures, grain boundaries, slide very rapidly, relaxing 
the shear stresses on them to-very low values. The 
displacements, and hence the strains they cause, are 
very small and the sliding rate is a consequence of the 
intrinsic properties of the boundary. Thereafter sliding 
can only take place at a rate which is controlled by 
accommodating creep deformation in the grains and is 
very much slower. When the specimen is unloaded by 
A% the shear stress on a boundary changes from zero 
to - mA~a and reverse sliding takes place to reduce it 
to zero again. This sliding takes place at the very high 
rate determined by the intrinsic "viscosity" of the 
boundary and purely elastic accommodation of the 
grains. To calculate the resulting reverse strain rate 
and maximum reverse strain we use the formal theory 
outlined by Nowick and Berry [281. 

If u is the relative tangential displacement of a pair 
of grains then 

= - -  (U - -  U r n ) I t  r ( A 1 )  

where fi = du/dt, urn, the maximum displacement de- 
termined by elastic accommodation and tr is a charac- 
teristic time (the relaxation time) given by 

tr = toexp(kh/RT)  (A2) 

where to is a constant, Ah is a molar activation 
enthalpy, R is the gas constant ( = 8.314 Jmol  ~ K -  1) 
and T is thermodynamic temperature .  From Equa- 
tion A1 

and 

u = u m E 1  - exp(t/tr)l (A3) 

(t = ( 1 / t r ) U m [ 1  - -  e x p ( -  t / t r ) l  ( A 4 )  

We also have 

bl m ~- rd/G 

= r n z ~ c Y a d / G  ( A 5 )  

where d is a linear grain dimension (the grain size) and 
G the shear modulus. 

Consider a facet of grain boundary, which we as- 
sume to be plane. The strain from this facet is 

6~ = a u m / V  (A6) 

If there are n facets in the volume, V, then using 
Equation A2, the total strain is 

V A(y a = (adm 2) - ~ -  [1 - exp( - t/tr)l (A7) 

When t = oe, e = era, the maximum value, i.e. 

V Ac~a (A8) ~m = ( a d m 2 )  G 

The average value could be calculated for a specific 
model of grain shape, but it is more convenient to use 
Zener's result [291 for the ratio of the relaxed and 
unrelaxed tensile moduli (ER and E, respectively). This 
is 

ER (7 + 5v) 
E - 2 ( 7 + v - - 5 v  2) (A9) 

Because where v is Poisson's ratio. 

we have 

(A10) 

A(3- a (7 - 3v - 10v2~ 

A%k 
- (All)  

E 

where k ~ 0.56 if v = 1/3. Using Equations A l l  and 
A8 in Equation A7 we obtain 

A ~ a k  
a - [1 - exp( - t/tr)l (A12) 

E 

and 

Acyak exp( - tits) 
= (A13) 

E tr 

The time, to.99 , for the strain to reach 99% of the 
final value, ~m, is, from Equations AI2 and A l l  

to.99 = t r l n  100 (A14) 

and the reverse strain rate, ~0.99, at t0.99 

A%k 
~;0.99 - -  (A15) 

100 Etr 

From Equation A13 the initial strain rate, ~i, im- 
mediately after unloading is 

Ao-~k 
gi = (A16) 

Err 

These results can be used to carry out some illustra- 
tive calculations. Williams and Leak [30] give for 

T A B L E  I 

T(K) T~ Tr, tr (s) E (GPa) ~i (s -  1) ~0,99 (S- 1) t0,99 (S) 

425 0.46 384.1 72 1.0 X 10 7 1.0 X 10 -9 1769.0 
475 0.51 5.43 70 7.4 X 10 -6 7.8 X 10 -8 25.0 
525 0.56 0.17 66 2.5 X 10 4 2.4 X 10 -6 0.8 
575 0.62 0.098 59 4.75 X 10 -3 4.75 X 10 -5 0.06 
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99.999% aluminium, to=  10-1Ss, and A h =  143 
kJ mol -  1. Table I gives values of to.99 , ~0.99 and gi for 
a stress reduction of 5 MPa and various temperatures 
using these data and values of Young's modulus from 
Beaton and Hewitt [31]. 

It is clear from Table I that, for tests above about 
500 K in very high-purity aluminium, grain-boundary 
relaxation is completed so rapidly that its effects will 
not be noticed in a strain transient dip test. Unloading 
must take at least 1 s if dynamic effects are to be 
avoided and the first readings of strain are likely to be 
several seconds after the start of the unloading pro- 
cess. It should be noted that although ei and k0.99 de- 
pend on  ACYa, t0.99 does not. 
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